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1. Introduct':rt

Consider the statistical model M-=(X,A,(P*:O9fl})) and event CEA and suppose we

wish to estimate P,(C) based on a; sample X-(x1 , .. ,x.) from M. The typical approach to

this problem is to select a probability measure QX on A, dependent on the observed data, and

then quote QX( C) as the estimate.

For example the nonparametric estimatir of P#(C) is

s'.

where I¢ is the indicator function of C; i.e. the empirical probability content of C. For a

sufficiently broad class {P#:Oefl ) this estimator is known to be UMVU.

If m(X) is a complete minimal sufficient statistic for (P,:OEfl ) then

O5( C)e-El Qj( C):m(X)j (2)

is UMVU. Clearly Q" is a probability measure on A as it is formed by mixing probability dis-

tibutions.

Perhaps the most commonly used method of obtaining an estimate is to choose some

estimator*(X) of 0; e.g. the MLE, and then quote

Qf(C)-P•(X(C) (3)

as the estimate.

In a Bayesian context, or perhaps just as a method of generating a plausible estimate,

a prior for 9 gives rise to a posterior Px for 6 which in turn induces a distribution for Pj( C).

SThen the minimum Bayes risk estimator with respect to squared error loss is given by

"Q'(c)f PI,(C)dPx() (4)

the expected value of PO with respect to the posterior. Again QX is a probability measure on A

as it is a mixture of probability incasurea.

Other straLegies could also be devised for 2btaining estimates but we will restrict our

discussion to those prcbentwd above. It. all of these approaches we note that the choice o'f Qx

does not deCpend on C. As suich it •cents nore appropriate to say we are estimating P, rather

.. "...



than PO(C). %

b" *

One way of inducing at least some dependence on C is via the joint invariant group of

the model At and the event C; namely the class G of those 1-1, bimeasurable g:X -. X ntis-_

lyiig gC= C and both of Pl1  and Pg9- are in {P:e:Efl ) for all OEfl. If X also satisfies

topological requirements then it makes sense to require that g also preserve this structure; e.g.

if X-RP then we require g to be a diffeomorphism (1-1, onto and infinitely differentiable

both ways). If x-PO then gp-PO' and P#(C)-P#(g-'C)s-Pg'•(C). Thus the estimate

of P#(C) should satisfy Qx(C)-rQDx(C); i.e. our estimate should be the same whether we

observe X or gX. As we shall see, this criterion leads to some restriction in the class of possi-

ble estimators for the problem we consider in the succetding sections.

2. Circular Error Probabilities for the Bivariate Normal

Suppose that x-.N2(p,E) and Ck-(x: x'x< k2 ). Thus x could give the coordinates

of the hitting point for some projectile aimed at bullseye o and we wish to estimate the proba.

bility of coming within k of o as an assessment of the accuracy of the targeting procedure.

Even when (p,E) is known the problem of calculating P(p.r)(Cj) is significant. For

various tabulations and results related to this problem see, for example, Grad and Solo-

mon(1955), Harter(1060), Lowe(1960), Groenewoud et al.(1907) and Govindarajulu(1983).

For further problems involving probability calculations related to targeting problems see, for

example, Solomon(1953) and Guenther and Terragno(1904).

The problem we are concerned with here is Wo estimate P(,,r(6C,) based on a sample

Xu=(x,, ,x.) from the N2(p,E) distribution where pER 2 and EER 2  positive definite

are unknown. The relevant invariant group for this problem is 0(2), the group of orthogonal

transformations on R2. In particular we discuss algorithms for the evaluation of estimators of

the form (2), (3) and (4) which satisfy the invariance requirement. Further we present some

Monte Carlo results which give some indication as to the behaviour nf the estirnr•ps in'

repeated sampling and as such present additional information for the investigator who might

be faced with choosing amongst them.
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The estimators appropriate to the situations when (p,E) is restricted; e.g. requiring

that E--o! and a >0 unknown, can typically be obtained by making obvious adjustments to

our algorithms for the most general case. The computer programs for the evaluation of the

estimators and the simulation were written in Fortran 77 and are available from the authe.s.

All the calculations discussed in this paper were carried out on the PDP 11-70 in the Depart-

ment of Statistics, University of Toronto.

The dual of the problem addressed here is to specify po-P(,.E)(C5 ) and then based

on the data X estimate k. When po-m. 5 the value of k is referred to as the circular probable

error. This problem is discussed in Blischke and Halpin(1966).

3. The Standard Estimator

By the standard estimator we mean

where Z=n- 'xi- "nd Sx=-(X- V')(X-fl')'; i.e. we have replaced u and E by their UMVU

estimators. This estimate is clearly invariant under 0(2). The tabulations mentioned earlier are

available for the calculation of (5). This approacb, however, requires interpolation and is not

appropriate for extensive Monte Carlo work. We discuss two approaches to the computer

Svaluation of this estimator.

First we -write SX=SS& where S&==(e,) is the unique lower triangular matrix with

positive diagonal elements satisfying this equation. Then if s-N 2 (oI) we can write (5) as

P{¢.1)( jIt+(n- l)-' Sais 11 :5) -P(0,,:)( F, dj(;;+b,)' < n-- I" ) (6) ..

where b-( n- 1)P/q'S; 1 5 and QDq is the spectral decomposition of S&,&

An algorithmn for calculating (6) is obtaiued by using the fact that :1, z2 --N(O,1), sta-

tistically independent and thus we can write (6) as

, i ................ ................... .... I........'''''''l'p....



*0f O(((Z)()-$(t( z)) dz (7)

where 4' is the distribution function for the N(0,1), 0 is the density,

and u(s), 1(z) equal r '

- 1,• dT' n•- 11)0•- d22(z2+b) 2 (8)

respectively. An efficient algorithm is then obtained by using a packaged routine for the _

evaluation of 4', e.g. IMSL, and performing the integration using a Gauss-Legendre rule.

"A disadvantae of the above approach arises when we are interested in the higher

dimensional analogs of this problem as the computation becomes progressively more compli-

cated. A more efficient approach, and it is the one we have adopted, is based on an adaptation

of an algorithm due to Shedl and O'Muircheartaigh(1977) which is in turn based on results due

to Ruben(1962) concernir.g the evaluation of the distribution of (z+b)'D(s+b) where

s-Np(o,I), bER' and DER'" is diagonal with nonnegative diagonal elements. The result

gives a series reprosention for the distribution function of this quantity and thus also a series

representation for (6). We controlled the accuracy in our calculation by stopping the summa,.

tion when the contribution of the remaining terms was less than 10-1. For p- 2, n- 20 an

evaluation of the estimate takes approximately .1 seconds of CPU time. "

4. The LUM Estimator.

We have that (', Sx) is a complete minimal suf!lcient statistic and thus the UMVU

estimator is given by L

This expectation can be evaluated using a result due to Laurent(i957); namely the conditional

distribution of x] given (i, Sx) has density proportional to

[I- (I1- I/,)-'(x,- R)'s;ý'(x,- •l'+•(o

where x1 is constrained so that the term in the brackets is positive. If we transform X-QX.

where QEO(2) we see that (10) is unchanged and thus this estimator is invariant under 0(2).

.~ .

• • . i ," ", -''," , I"` "'+, "I.. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .,.".'.. ."'". .,."*, '



Laurent proposed that a calculation such as (0) could be carried out by a double

numerical integration. In fact we can simplify the calculation of (9) aubmtanally. First we

make the transformation xi-t where t-41-7177 S&4xI-X). The density oftt i3 uien propor-

tiona| to
[t_ t• ,-s) 2. ( z

Then in a particular quadrant of R' we make the wansformatio t-.v where v- ,

di-=agn(tQ). This transformation has Jacobian (1/2) 2vU" T il/2 and thus the density of v, con-

ditional on AL quadrant, is proportional to..

V_ iI'(-VI- '2) (.-S (12)

From this we conclude that (# 1 ,V 2,1- VI- V2) is distributed Dirichleq(l/2,1/2,(n- 3)/2).

"Ile estimate can then be expressed as

4 , P{(' 1+Vi-iF e,,dv, , 2 )2

where SA,(aq) and P refers to the distribution of (vi,v:). We now make the transformation

(v 1 ,u 2)--.(ut) where u-v 1 /(tI-t) and V-V 2 . This transformation has Jacobian 1-v and thus

the joint density of (u,v) is proportional to •,.•

(14)
.:

Therefore u-'Beta(1/2,(n-3)/2) is statistically independent or v.Bet&(1/2,(n-2)/2), Then

denoting the Bet.a(pq) distribution and density functions by B(" p,q) and b( j p,q)

respectively (13) can be written as

. • f [B%(-4v) I1/2,(n- 3)/2)-B(uI(,v) Il/,(n- 3)/2)1b(v 11/2,(n-2)/2) d (15)

where putting r2, r, equal to

respectively, we have that

Vi- Mi(n naa( ri,O) 1)12 (17)

and putthig 42 , at equal to

• .. .................... ..................................

• ' ' I I' " I " i" z" ", " " . " '.•... .' " "."'. '." _•' ".•,¢. '...".'.'
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:I respectively where ,(

&-(I- 1/n)(a4t+821

b ( ,2--2V 717- dl( ,=.11 ,Y2e21+4 • / 8- e21822d2V'f')

then we have that

1A. 9,)- min• maxA, 0), 11) 2. (2.0) "

To evaluate (15) we use an IMSL subroutine for B( I-/2,(n-3)/2) and then use

Gaaus.-Legendre integration. The efficiency of the integration is improved by using an IMSL

routine for the inverse of the BetIa(/2,(n-2)/2) distribution function to find the point vsup

such that B(vsupj1/2,(n-.2)/2)-.909999 and then using min(v 2 ,vsup) as the upper limit in

the integration. This ensures that the Gauss points are concentrated where the probability lies.

We further improved the efficiency of the integration by making the transformation v-w

where w-v-'/ so that w has density proportional to (1- u•)("-)tZ. This transformation

- ' removes the singularity at 0 which b( 11/2,(n- 2)/2) possesses.

The accuracy of the calculation is controlled by dividing the interval of integration

into subintervals of equal length and using a Gauss rule of the same order in each. The pro-

gram allows the order of the rule to vary from I to 20 and for as many subdivisons as desired. .

Thus arbitrary accuracy can be achieved with the tradeoff being computing time. For n- 20,

using 4 subdivisions and a Gauss(10) rule, stability was achieved in the fifth dec;mpl place and

r took about 1.5 seconds of CPU time. L

S. Bayes Estumate

"There are of course many different Bayes estimates as there. are many different-"L.L
choices for the prior distribution of 0 and for the loss function. Here we will use mean-squale

error and choose the prior distribution for (p,E) to be Jeffrey's prior; see for example Box and

Tiao( 1073). p.

An alternative approach to this problem, which also leads to the Bayes estimate



associated with JcfTrey's prior, is to use the strctural model for the A

multivariatc normal model based on the affine group; i.e. the group

I G-JI.,C]J aR 2 , GER2', del(C)- 0), '&I,CIJ%,C21uu[a&I+CL'J,C&C2] and we represent

x-N4,,) as xm-IA,rls-,u+rs where r satisfies -rr' and s-N•(,I), his approach is

discuased in Froser(1979) where the positive affine group is used; i.e. we also require

det(C)>0. Use of the full affine group requires only minor adjustment to the analysis IL

presented in Frwer( 1979) and it provides a convenient framework for obtaining our results.

The structural model leads to the following relations

r-cc ((21)

where D--r', rER2 * with def(r) 0, SxmC¢Cx' with CxER2 > calculated as described in

Fraser(1979), "-N 2 (@,n- 1 f) staistically independen', of C which has density as described in

Fraser(1979) with the adjustment that the density is multiplied by 2" and is now a function

on [C CE R"', det(C) S 0).

i ' As is well-known, the Bayes estimate with respect to mean-square error, is given by L-:
the mean-value, assuming it. exists, of the marginal posterior distribution of the quantity to be

estimated. Thus we wish to calculate

f P(,,a(Ch)dPx(,'E) 
(22)

Denoting the joint posterior distribution of (;,,r) by PI and using E=rr' we can write (22)

as 
5

f P(o,)( 1 +rl_ z k dP(,,r) (23) L'
This expectation can be evaluated by using the relations (21) and the joint distribution P" for

(i, C) to obtain

P(O.•)( I1+4-71n CXtU< k)dP'(CC) (24) L.

where t--v=1T C" (s--). From Fraser(1979) we have that t has density function given by

A._2A.-'( 1+•). (25) .'.

where A,=2 ir A/F(I//2); i.e. t has a canonical bivariate Student. (n-i) distribution. Using the

""Z.......
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Gram-Schmidt decomposition on the rows of Cx we obtain Cy-S,%Q where Sa is as before

and QEO(2). We note that the distribution or t is invariant under orthogonal transformations. -

Then by the theorem of total probability (24) can be written as

P((l 1 +VI+1/m j31, 1 )"+(F2+V1+1Tn 012 11+A+V+n 8 t2)3< k2 ) (26)

where P refers to the distribution of t • V

We now make the transformation (t 1,t 2)-.(u,V) where -iVWT t1-f-ii/ and-

1-- v/-'2 t2. The density of (u,v) is proportional to

~ (27)
n1 n-2

and thus u-Student(n-1) statistically independent of v--Student(n-2). Therefore, denoting

the Student()) distribution and density functions by G( IX), g("X) respectively, we have that

(27) can be written as

f [C( 2(V) In- 1)- G(,,(v) In- I)] g(v In- 2) dv (2s)

where v2 ,vl equal L
,AI [E'1a2,- i2",±kv.i ký• 2i ] /1+n *11 (29)

respectively, 2( v),uj(v) equal

ý ',i I[+v2An- 2)1 b- (v)( b 1 (v)- 4alcl(v))'Aj /2a 1 (30)

respe~lively and

6 1(v)==2VTT7T [(Fiij+ýi22v 1_+1/n R(lo 11+F2821) +V"~7 sI'n-21822'/v n-2

C1(v)=(F 2+V1+/Tn =•,v/n'-2 )2+•z k: (31)

The calculation is then carried out using an IMSL subroutine for the Student distribu-

tion function and Gauss-Legendre rules for the integration. The accuracy was controlled by

subdividing the interval (v1 ,v2 ) into subintervals of equal length, carrying out the numerical

integration within each subinterval using a Gauss rule of the same order and controlling the

number of points in the rule. If V1<0<v2 then each of the intervals (. 1 ,0) and (0,v2) was

subdivided into the same number of subintervals of equal length. This is to ensure that the

• . . . .. - . . . . - - . . ... . ... . . .... -. . .......-- ... .. .. . .. .. .` .... ... . ... ..... ............. ... . .. . .. . . .. .'.
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mode 0 of the Student density serves as an endpoint for the integration as this improves the

efficiency of the calculation. A further improvement was made by requiring that jvr be no

greater than 1.oooo=1(n- 2) and this point was obtained from an IMSL subroutine for tht inverse

of a Student distribution runction. For n- 20, using 4 subdivisions and a Gauss(10) rule, sab-

bility was obtained in the firth decimal place. This calculation took approximately .8 seconds of

CPU time.

As discussed above, the estimator (28) is ootained using Jeffrey's prior and the result

is also obtained from the structural model using the affine group. In effect Jeffrey's prior

results as the marinalization of the right Ha"ar prior on this grou;,. As is well-known other

groups can be used to parametrize the multivariate normal model and their right Haar priors

give rise to different priors for the full parameter (p,E). For example, the affine lower triangu-

lat group leads to the estimate

P( s V< + .. St.. k) (32)

where P refers to the distribution of t which has density proportional to

by results in Fraser(1979). Thus we see we will obtain a different estimate of a form similar to

(28) in this case.

The invariance considerations lead, however, to the choice of the estimator (28). For

if we transform X to QX where QEO(2) then (R,Cx) transforms to (Qf,QCX) and from (24)

we see that the estimator is invariant under 0(2). This invariance property does not hold,

however, for the estimator based on the affine lower triangular group. For example, if S.•= I

then SA5 l, QSxq- I and (33) is not invariant with respect to 0(2) which proves the non-

invariance of the estimate in this case.

8. •he Monte Carlo Sti.cy

To study analytically the repeated sampling behaviour of the estimates we have dis-

Scussed presents a difficult problem. Accorditgly a simulation study was carried out to see how

effective the estimators are and tk asess their relative merits.

So .



The performance of the estimators was considered for four sets of parameter values

(i... 'U-0

(ii) j,-I, E- I

( p-) 0-O, E1-.511'+.51

For each parameter set we calculated k such that P(,.qE(C)--.5 using the algorithm of Shcil

wid O'Muircheartnigh(1977). Our estimates were then always of the true value .5. For each

parameter set we considered the estimation problem for sample sizes n- 10 and n- 20.

For a given parameter (p,E) and sample size n we do not need to generawe the full

sample X-(xl .... ,xs) from N 2 (p,E) to calculate the estimates. For we need only generate

(r,SX) where S-N 2(p,n.-') statistically independent of Sx-W 2(E,n- 1). To do this we used

the following relations

sX,-- ,,sAsJ (34)

where ae-N 2N(o,) statitIcally independent of SAm-(eq) where a2 ---Chi-square(n-1),

1--Chi-square(n-.), P2 1-- N(0.1), j12-0 and #I, s=, s,2 are statistically independent. The

N(0,1) variables were generated using the Box-Muller method; namely

zm(-2fog(%i))0t2 co(2r V2 ) where v1, v2 are statistically independent and distributed U(0,1).

The chi-square variables were generated using a method due to Cheng and Feast( 1079) and in

fbct we used the program RC KM3 as it is liste d in Brat~ley, Fox and Schrage(1 983).

The uniform random variates needed for the generation of the normals and chi-

squares were obtained using the routine due to Schrage(1979). To decrease pos.ible effects

due to not-quite-randomness we first, filled a table with uniform values . Then each time a

value was required we generated a random address ,tlc contents of which becomes the Sen.

eratcd value, and replaced it in the table by a newly generated value.

For any given (•,Sx), generated as above, we computed all three estimators; i.e we

used common random numbers. Accordingly the estimators share equally in any ceTects due to

.. . . . . . . .. . . . .. ..............- -.
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deficiencies in the generators. Further, as we will see, this technique substantially improved

the efficiency of the Monte Carlo study. tj

For a given sample size and parameter set we generated nrep values Of (ZSx) where

nrep depended on the sample size nk. Then for each estimator, denoted generically for con-, 
L %.

venience by x, we estimated

Av(z)-E(z)

MSE(z)-E(x-.5)2 (35)

"by

.• E( •) - ( ,- .51 2 (36) .. ,-

respectively. The standard errors of these estimates are given by

SDI9$E~r))--[E~z-.5)'-CE(z- .5)2)j]'Ij/.V~rep 1(37) I::i

respectively and they in turn are estimated by

r. ar

$• •s( =) -I • ( ,- .612 Z-•SE ))2/.,.p ( .n - '1p_(•

respectively. We then tested the null hypothesis that x is unbiased for .5 via a z-test, using the

statistic

z-(Av(z))- .5)/•(Av(,z)) (39)

i.e we compare this value with the N(O,1) distribution by computing the observed level of

significance P(IZ I>Iz 1) where Z--N(O,1).

rhe primary purpose of tLhe study was to compare MSE(x) with MSE(y) for estima-

tors x and y. When X is tht nonparnmctric estimatoor we have that MSE(x)~ .25/nrep and the

test statistic takes the form



Whcn x and y are two of the estimators we discussed in. the preceding sections the test statistic

takes dhe form
whee *-(AI1SE(y)- )ýSE(s)I)/:D(,ICfSE(y)-,ýE(z)) (41)

where
SDCkSrCy)-MkS_,(Z)--[SD2CA;jSE(y))+ýD2( 1SECz))- 2 &v(SE(j),'MSE(r)) JI'tem f (42)

is the estimate of

SDC kSECy))-,ýSE~x)).[ Var(y- .5)2+ Va,(x -. 5)'- 2 Cov(Cy= .5)2,(z -. 5) 2)) )/n,•l] 0C43) "

and where

•o,(•KS(•I)•IS(=)mm (•/I.5)(=/-.S)-]kSE(y) fSr,(.T))/nrep(ynrep-). 44 ''*

The covariance term is required in (43) because we have used common random numbers.

From this we see where the gain in efficiency was obtained as in all cases A'SE(s) and

KISE(Y) were positively correlated and this reduced SD(•fSE(y)-AMSE(z)) substantially.

The estimated correlation between these two quantities ranged from .4680 to .996 and in most

cases was greater than .700.

The number of replications for each sample siue and parameter sat was determined by r •
first performing a trial run of 100 for all cases and calculating the estimates we have just

described. The primary determinant of sampling variability turned out, to be the sample size.

We then estimated an upper bound for SD(AiSE(z)) for all estimators over all parameter sets .-. "

within a sample size. On the basis of this information we chose nrep so that when n- 10 the

half-length of a .95-confide,,ce interval !.-,r MSE(x) would be less than .001 and when n- 20

so that a .95-confidence iuterval would have half-length less than .00025. With some extra

margin for safety this lead to choosing nrcp- 15000 when n- 10 and nrep- 10000 when

n- 20. The results we obtained tend to confirm our expectations. Thcse choices gave con-

clusiv-L results for the comparisons amongst the MSE(x) because of the use of common ran-

dom numbers. Further these values of nrep gaive that the half-length of a .905-confidence

interval for Av(x) is less tian .005.

S. . . . ' I..• , i I . . . . . .... . i.. . ]'
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For each estimator the accuracy of the calculation was controlled so that the error was

less than 5)dO0" in each evaluation of the esti•ate; i.c. if i denotes the computed value of

the estimate and z denotes the actual value of the estimate then

5• , )ds~ o-' (45)

Thus the absolute error in Av(z) is less than 5XL-0- and since

.K2-.)-(i-_.5)2)1< K )2-f )2 +21Iz I- I-z'-• •÷-x+i 1+2 Ix-i 1 4I-x i 1 (48)

we have thaL the absolute error in ASE(z) is less than 2X10". All calculat.ons were done in

double precision. ,-

I4a I.

4o .
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Table 1

Sample also- 10

Parameters Estimator Av(z-) I .D(k.(z)) j CA VfSE(S) .9D(1SE(X)) OW~

(1) Laurent 0.501030 0.00094879 0.085 0.013,50 0.00016076 0.0

Standard 0.07g41 0,00088234 0.0 0.011740 0.00014002 0.0

Ba4e8 0.422713 0.00077622 0.0 0.015011 0.00013103 0.0

(oi) Laurent 0.499720 0.00102002 0.787 0.01560M 0.00018432 0.0

Standard 0.468683 0.00101844 0.001 0.015609 0.0001T•73 0.0

Bayts 0.443320 0.00067711 0.0 0.0147T2 0.00016760 0.0

(Ill) Laurent 0.501258 0.00092120 0.174 0.127320 0.00015824 0.0

Standard 0.505730 0.00066404 0.0 0.011231 o.ooo01 o o 0.0

Bames 0.422180 0.00075695 0.0 0.014879 0A00012916 0.0

(IT) Laurent 0.490390 0.00100313 0.440 0.01509 0.0018800 0.0

Standard 0.491079 0.00100830 0.0 0.0163229 0.00018625 0.0

Bayes 0.434217 0.00088902 0.0 0.016182 0.00017131 0.0

*'.
t..

*!
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Larn sBs-10.2 0.0141

iJ

!t

I 1

Compard sonys .2. AM40

()Laurent vs Standard 74.2 0.00002343

Lauren. IV$ Bayea 710.2 0.00017141

jStandard vs Bayes 7.53. 0.0014I005
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Table 3

Sample 0i24m 20

(I) Laurnt, 0.500797 0.00070951 0.682 0.006302 0.00009100 0.0

Standard 0.504993 0.00077234 0.0 0.005089 0.00008687 0.0 "N

Bayes 0.450413 0.00072084 0.0. 0.006763 0.00008111 0.0

(II) Laurent 0.600332 C.00087000 0.529 0.007"W 0.00010044 0.0

Standard 0.408784 0.00087101 0.181 0.007587 0.00010004 0.0

Bayes 0.473130 0.00080648 0.0 0.007225 0.00000073 0.0

(111) Laurent 0.500007 0.00077780 0.248 0.006050 0.00009016 0.0

Standard 0.503060 0.00078381 0.0 0.008807 0.00008833 0.0

Byes 0.410345 0.00070728 0.0 0.006576 0.00007921 0.0

ilv) Laurent 0.500133 0.00085500 0.80 0.007300 0,00010730 0.0

Standard 0.425074 0.00085777 0.0 0.007376 0.00010739 0.0 1
Bayes 0.465757 0.00081321 0.0 0.007784 0.00010672 0.0

I....

C
I-
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"Table 4

Sample $11,- 20
"" I

Parameters Compauison 9 , S MSE( y)-MAISE())

(1) LUeaft vs Standard 62.6 0.00000765

Laure at vs Bayes -6.73 0.00006470

Standard Ts BA•yS -11.65 0.00006607 "

(i)Laurent vs St~adard -0.74 0.00000448 4

Laurent vt Bay*s 7.44 0.00004820

U Sadard vs Bayes 8.06 0.00004490

(N) Laurent vs Standard 63.48 0.00000660

Laurent ve Bayes -5.22 0.00006380

Standard vs Bayes -13.56 0.00006470

(;v) Laurent vs Standard .8.32 0.000oo0o,

Lturent. v Bayes -7.03 0.0000991.

Standard vs Bayes -7.70 0.00005308

* * ~ *-.'*"



In every case it turns out that we have no evidence against the hypothesis that the

Laurent estimator is unbiased for .5 and this is as theory predicts. We see that in every case

except n- 20,(ii) we reject the hypothesis that the Standard estimator is unbiased for .5. We

note, however, that the bias in this estimator is quite small in every case with the largest esti-

mate of the bias being about .009 and the bias decreases as n increases. In every case we reject

the hypothesis that the Bayes estimate is unbiased with the smallest estimate of its bias being

about .027. The bias decreases as a increases and can be severe for Small sample sizes.

In every case we reject the hypothesis that the mean-square error of the estimator

included in the study was equal o that of tht nonparametric estimator. The Laurent, Stan-

dard, and Bayes estimators would all appear to be substantial improvements over the non-

parametric estimator. The smallest relative efficiency , as measured by the ratio of the mean-

square errors, of an estimator to the nonparametric estimator was 154%C

We now compare the mean-square errors of the estimators included in the study. We

note that in every case except for a- 20, (ii) Laurent versus Standard, we categorically reject

the hypothesis that the mean-square errors are equal. For (i), in both sample sizes, we have L
that the Standard estimator is superior to Laurent's which is in turn superior to the Bayes esti-

mator. For (ii), the Dayes estimator is superior to the other two while the Standard is superior

to Laurent's. when n- 10 and they are equivalent when n,- 20. For (iii), we have the same

ranking as in (i). For (iv), Laurent's estimator was best followed by the Standard which in

turn was better than the Iaycs estimator and this applied for both sample sizes.

We see from the above discussion that no estimator can be categorically accepted or

rejected as the best or worst in the circumstances we considered. On the other hand, when tak-

ing aCLount of both bias and mean-square error, it would seem that the Standard estimator "

m5- would be the most practical choice. In fact the lowest relative efficiency of the Standard esti- L
.mator to the best estimator, when it was not best, was about 94%, The lowest relative

efficiency of Laurent's estimator to the best was about 87% and the corresponding value forN the lBaye' estimator was about 76% Perhaps most surprising in our results was the good per-

..-.
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formance of the Standard csti;iwator relative to Laureut's estimator given that the latter

possesses an optimality property. A furthcr point in favour of the Standard estimator is given

by the fact that a much more efficient algorithm is available for its evaluation than for the

other two.

7'. ~onclusions

This paper has been concerned with the problem of estimating circular error probaLili-

ties when we require that the estimator be invariant under the invariant group of the circle.

5" Three competing estimators were proposed and we developed efficient methods for their

evaluation.' A Monte Carlo study was carried out to provide more information concerning the

relative merits of the estimators. On the basis of this study and the relative efficiencies of their

algorithms a recommendation can be made that the Standard estimator is perhaps the most

practically useful for this problem. In all cases the estimators were substantially better than the

nonparametric estimator when we are assuming bivariate normality.
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